
Copyright © 1994-2009 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning
or referencing this document.

PKCS #11 Other Mechanisms v2.30: Cryptoki

RSA Laboratories

16 April 2009

Table of Contents

1 INTRODUCTION .. 7

2 SCOPE... 7

3 REFERENCES.. 7

4 DEFINITIONS.. 10

5 GENERAL OVERVIEW ... 12
5.1 INTRODUCTION... 12

6 MECHANISMS .. 12
6.1.1 FORTEZZA timestamp ... 15

6.2 KEA... 15
6.2.1 Definitions .. 15
6.2.2 KEA mechanism parameters .. 16
♦ CK_KEA_DERIVE_PARAMS; CK_KEA_DERIVE_PARAMS_PTR.. 16
6.2.3 KEA public key objects ... 16
6.2.4 KEA private key objects.. 17
6.2.5 KEA key pair generation .. 19
6.2.6 KEA key derivation... 19

6.3 RC2 ... 21
6.3.1 Definitions .. 21
6.3.2 RC2 secret key objects .. 21
6.3.3 RC2 mechanism parameters... 22
♦ CK_RC2_PARAMS; CK_RC2_PARAMS_PTR... 22
♦ CK_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS_PTR ... 22
♦ CK_RC2_MAC_GENERAL_PARAMS; CK_RC2_MAC_GENERAL_PARAMS_PTR............. 23
6.3.4 RC2 key generation .. 23
6.3.5 RC2-ECB .. 24
6.3.6 RC2-CBC.. 25
6.3.7 RC2-CBC with PKCS padding ... 26
6.3.8 General-length RC2-MAC.. 26
6.3.9 RC2-MAC ... 27

6.4 RC4 ... 28
6.4.1 Definitions .. 28
6.4.2 RC4 secret key objects .. 28
6.4.3 RC4 key generation .. 28
6.4.4 RC4 mechanism .. 29

ii PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.5 RC5 ... 29
6.5.1 Definitions .. 30
6.5.2 RC5 secret key objects .. 30
6.5.3 RC5 mechanism parameters... 31
♦ CK_RC5_PARAMS; CK_RC5_PARAMS_PTR... 31
♦ CK_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS_PTR ... 31
♦ CK_RC5_MAC_GENERAL_PARAMS; CK_RC5_MAC_GENERAL_PARAMS_PTR............. 32
6.5.4 RC5 key generation .. 32
6.5.5 RC5-ECB .. 33
6.5.6 RC5-CBC.. 34
6.5.7 RC5-CBC with PKCS padding ... 35
6.5.8 General-length RC5-MAC.. 36
6.5.9 RC5-MAC ... 36

6.6 GENERAL BLOCK CIPHER.. 37
6.6.1 Definitions .. 37
6.6.2 DES secret key objects.. 38
6.6.3 CAST secret key objects.. 39
6.6.4 CAST3 secret key objects.. 40
6.6.5 CAST128 (CAST5) secret key objects... 40
6.6.6 IDEA secret key objects .. 41
6.6.7 CDMF secret key objects.. 41
6.6.8 General block cipher mechanism parameters .. 42
♦ CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR 42
6.6.9 General block cipher key generation.. 43
6.6.10 General block cipher ECB... 43
6.6.11 General block cipher CBC... 44
6.6.12 General block cipher CBC with PKCS padding .. 45
6.6.13 General-length general block cipher MAC.. 46
6.6.14 General block cipher MAC.. 47

6.7 SKIPJACK .. 48
6.7.1 Definitions .. 48
6.7.2 SKIPJACK secret key objects ... 48
6.7.3 SKIPJACK Mechanism parameters.. 50
♦ CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR... 50
♦ CK_SKIPJACK_RELAYX_PARAMS; CK_SKIPJACK_RELAYX_PARAMS_PTR................... 51
6.7.4 SKIPJACK key generation.. 52
6.7.5 SKIPJACK-ECB64 ... 52
6.7.6 SKIPJACK-CBC64 ... 53
6.7.7 SKIPJACK-OFB64 ... 53
6.7.8 SKIPJACK-CFB64 ... 54
6.7.9 SKIPJACK-CFB32 ... 54
6.7.10 SKIPJACK-CFB16... 55
6.7.11 SKIPJACK-CFB8... 55
6.7.12 SKIPJACK-WRAP ... 56
6.7.13 SKIPJACK-PRIVATE-WRAP .. 56
6.7.14 SKIPJACK-RELAYX.. 56

6.8 BATON ... 56
6.8.1 Definitions .. 56
6.8.2 BATON secret key objects .. 57
6.8.3 BATON key generation... 58
6.8.4 BATON-ECB128... 58
6.8.5 BATON-ECB96... 59
6.8.6 BATON-CBC128 .. 59
6.8.7 BATON-COUNTER.. 60

 iii

April 2009 Copyright © 2009 RSA Security Inc.

6.8.8 BATON-SHUFFLE... 60
6.8.9 BATON WRAP.. 61

6.9 JUNIPER... 61
6.9.1 Definitions .. 61
6.9.2 JUNIPER secret key objects ... 61
6.9.3 JUNIPER key generation.. 62
6.9.4 JUNIPER-ECB128 ... 63
6.9.5 JUNIPER-CBC128 ... 63
6.9.6 JUNIPER-COUNTER... 64
6.9.7 JUNIPER-SHUFFLE ... 64
6.9.8 JUNIPER WRAP .. 65

6.10 MD2 .. 65
6.10.1 Definitions.. 65
6.10.2 MD2 digest... 65
6.10.3 General-length MD2-HMAC ... 65
6.10.4 MD2-HMAC .. 66
6.10.5 MD2 key derivation ... 66

6.11 MD5 .. 67
6.11.1 Definitions.. 67
6.11.2 MD5 digest... 67
6.11.3 General-length MD5-HMAC ... 68
6.11.4 MD5-HMAC .. 68
6.11.5 MD5 key derivation ... 68

6.12 FASTHASH .. 69
6.12.1 Definitions.. 69
6.12.2 FASTHASH digest ... 69

6.13 PKCS #5 AND PKCS #5-STYLE PASSWORD-BASED ENCRYPTION (PBE) 70
6.13.1 Definitions.. 70
6.13.2 Password-based encryption/authentication mechanism parameters............................... 70
♦ CK_PBE_PARAMS; CK_PBE_PARAMS_PTR .. 70
6.13.3 MD2-PBE for DES-CBC ... 71
6.13.4 MD5-PBE for DES-CBC ... 71
6.13.5 MD5-PBE for CAST-CBC ... 71
6.13.6 MD5-PBE for CAST3-CBC ... 72
6.13.7 MD5-PBE for CAST128-CBC (CAST5-CBC).. 72
6.13.8 SHA-1-PBE for CAST128-CBC (CAST5-CBC) ... 72

6.14 PKCS #12 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISMS............................. 73
6.14.1 SHA-1-PBE for 128-bit RC4.. 74
6.14.2 SHA-1-PBE for 40-bit RC4.. 74
6.14.3 SHA-1-PBE for 128-bit RC2-CBC... 75
6.14.4 SHA-1-PBE for 40-bit RC2-CBC... 75

6.15 RIPE-MD .. 76
6.15.1 Definitions.. 76
6.15.2 RIPE-MD 128 digest.. 76
6.15.3 General-length RIPE-MD 128-HMAC .. 76
6.15.4 RIPE-MD 128-HMAC ... 77
6.15.5 RIPE-MD 160 .. 77
6.15.6 General-length RIPE-MD 160-HMAC .. 77
6.15.7 RIPE-MD 160-HMAC ... 78

6.16 SET.. 78
6.16.1 Definitions.. 78
6.16.2 SET mechanism parameters... 78
♦ CK_KEY_WRAP_SET_OAEP_PARAMS; CK_KEY_WRAP_SET_OAEP_PARAMS_PTR 78
6.16.3 OAEP key wrapping for SET ... 79

6.17 LYNKS ... 79

iv PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.17.1 Definitions.. 79
6.17.2 LYNKS key wrapping ... 79

A MANIFEST CONSTANTS.. 81

B INTELLECTUAL PROPERTY CONSIDERATIONS... 84

C REVISION HISTORY ... 85

List of Tables

TABLE 1, SYMBOLS...ERROR! BOOKMARK NOT DEFINED.
TABLE 2, PREFIXES ...ERROR! BOOKMARK NOT DEFINED.
TABLE 3, CHARACTER SET..ERROR! BOOKMARK NOT DEFINED.
TABLE 34, MECHANISMS VS. FUNCTIONS..12
TABLE 53, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH...15
TABLE 67, KEA PUBLIC KEY OBJECT ATTRIBUTES..17
TABLE 68, KEA PRIVATE KEY OBJECT ATTRIBUTES..18
TABLE 69, KEA PARAMETER VALUES AND OPERATIONS ...20
TABLE 71, RC2 SECRET KEY OBJECT ATTRIBUTES ..22
TABLE 72, RC2-ECB: KEY AND DATA LENGTH ..24
TABLE 73, RC2-CBC: KEY AND DATA LENGTH ..25
TABLE 74, RC2-CBC WITH PKCS PADDING: KEY AND DATA LENGTH.............................26
TABLE 75, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH.................................27
TABLE 76, RC2-MAC: KEY AND DATA LENGTH ...27
TABLE 77, RC4 SECRET KEY OBJECT ...28
TABLE 78, RC4: KEY AND DATA LENGTH ...29
TABLE 79, RC5 SECRET KEY OBJECT ...30
TABLE 80, RC5-ECB: KEY AND DATA LENGTH ..33
TABLE 81, RC5-CBC: KEY AND DATA LENGTH ..34
TABLE 82, RC5-CBC WITH PKCS PADDING: KEY AND DATA LENGTH.............................35
TABLE 83, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH.................................36
TABLE 84, RC5-MAC: KEY AND DATA LENGTH ...36
TABLE 91, DES SECRET KEY OBJECT...38
TABLE 92, CAST SECRET KEY OBJECT ATTRIBUTES ...39
TABLE 93, CAST3 SECRET KEY OBJECT ATTRIBUTES ...40
TABLE 94, CAST128 (CAST5) SECRET KEY OBJECT ATTRIBUTES....................................40
TABLE 95, IDEA SECRET KEY OBJECT...41
TABLE 96, CDMF SECRET KEY OBJECT ...42
TABLE 97, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH44
TABLE 98, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH45
TABLE 99, GENERAL BLOCK CIPHER CBC WITH PKCS PADDING: KEY AND DATA LENGTH46
TABLE 100, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH47
TABLE 101, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH.............................47
TABLE 107, SKIPJACK SECRET KEY OBJECT..48

 v

April 2009 Copyright © 2009 RSA Security Inc.

TABLE 108, SKIPJACK-ECB64: DATA AND LENGTH..53
TABLE 109, SKIPJACK-CBC64: DATA AND LENGTH ...53
TABLE 110, SKIPJACK-OFB64: DATA AND LENGTH..54
TABLE 111, SKIPJACK-CFB64: DATA AND LENGTH..54
TABLE 112, SKIPJACK-CFB32: DATA AND LENGTH..55
TABLE 113, SKIPJACK-CFB16: DATA AND LENGTH..55
TABLE 114, SKIPJACK-CFB8: DATA AND LENGTH..56
TABLE 115, BATON SECRET KEY OBJECT...57
TABLE 116, BATON-ECB128: DATA AND LENGTH ..59
TABLE 117, BATON-ECB96: DATA AND LENGTH ..59
TABLE 118, BATON-CBC128: DATA AND LENGTH ..60
TABLE 119, BATON-COUNTER: DATA AND LENGTH ...60
TABLE 120, BATON-SHUFFLE: DATA AND LENGTH...61
TABLE 121, JUNIPER SECRET KEY OBJECT ..61
TABLE 122, JUNIPER-ECB128: DATA AND LENGTH ..63
TABLE 123, JUNIPER-CBC128: DATA AND LENGTH ..64
TABLE 124, JUNIPER-COUNTER: DATA AND LENGTH ...64
TABLE 125, JUNIPER-SHUFFLE: DATA AND LENGTH...64
TABLE 126, MD2: DATA LENGTH...65
TABLE 127, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH...........................66
TABLE 128, MD5: DATA LENGTH...68
TABLE 129, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH...........................68
TABLE 136, FASTHASH: DATA LENGTH ..70
TABLE 137, PKCS #5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONSERROR! BOOKMARK NOT DE
TABLE 138, PKCS #5 PBKDF2 KEY GENERATION: SALT SOURCESERROR! BOOKMARK NOT DEFINED.
TABLE 139, RIPE-MD 128: DATA LENGTH..76
TABLE 140, GENERAL-LENGTH RIPE-MD 128-HMAC: ..76
TABLE 141, RIPE-MD 160: DATA LENGTH..77
TABLE 142, GENERAL-LENGTH RIPE-MD 160-HMAC: ..78

1. INTRODUCTION 7

April 2009 Copyright © 2009 RSA Security Inc.

1 Introduction

This document lists the PKCS#11 mechanisms in active use at the time of writing. Refer
to PKCS#11 Obsolete Mechanisms for additional mechanisms defined for PKCS#11 but
no longer in common use.

2 Scope

A number of cryptographic mechanisms (algorithms) are supported in this version. In
addition, new mechanisms can be added later without changing the general interface. It
is possible that additional mechanisms will be published from time to time in separate
documents; it is also possible for token vendors to define their own mechanisms
(although, for the sake of interoperability, registration through the PKCS process is
preferable).

3 References

ANSI C ANSI/ISO. American National Standard for Programming Languages
– C. 1990.

ANSI X9.31 Accredited Standards Committee X9. Digital Signatures Using
Reversible Public Key Cryptography for the Financial Services
Industry (rDSA). 1998.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. 2003.

ANSI X9.62 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA). 1998.

ANSI X9.63 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Key Agreement and Key Transport
Using Elliptic Curve Cryptography. 2001.

CC/PP W3C. Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies. World Wide Web Consortium, January 2004. URL:
http://www.w3.org/TR/CCPP-struct-vocab/

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

FIPS PUB 46–3 NIST. FIPS 46-3: Data Encryption Standard (DES). October 25,
1999. URL: http://csrc.nist.gov/publications/fips/index.html

8 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

FIPS PUB 74 NIST. FIPS 74: Guidelines for Implementing and Using the NBS Data
Encryption Standard. April 1, 1981. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 81 NIST. FIPS 81: DES Modes of Operation. December 1980. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 113 NIST. FIPS 113: Computer Data Authentication. May 30, 1985.
URL: http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 180-2 NIST. FIPS 180-2: Secure Hash Standard. August 1, 2002. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 186-2 NIST. FIPS 186-2: Digital Signature Standard. January 27, 2000.
URL: http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 197 NIST. FIPS 197: Advanced Encryption Standard (AES). November
26, 2001. URL: http://csrc.nist.gov/publications/fips/index.html

FORTEZZA CIPG NSA, Workstation Security Products. FORTEZZA Cryptologic
Interface Programmers Guide, Revision 1.52. November 1995.

GCS-API X/Open Company Ltd. Generic Cryptographic Service API (GCS-
API), Base - Draft 2. February 14, 1995.

ISO/IEC 7816-1 ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 1: Physical Characteristics. 1998.

ISO/IEC 7816-4 ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 4: Interindustry Commands for
Interchange. 1995.

ISO/IEC 8824-1 ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

ISO/IEC 8825-1 ISO. Information Technology—ASN.1 Encoding Rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER). 2002.

ISO/IEC 9594-1 ISO. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. 2001.

ISO/IEC 9594-8 ISO. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. 2001.

ISO/IEC 9796-2 ISO. Information Technology — Security Techniques — Digital
Signature Scheme Giving Message Recovery — Part 2: Integer
factorization based mechanisms. 2002.

Java MIDP Java Community Process. Mobile Information Device Profile for Java
2 Micro Edition. November 2002. URL:
http://jcp.org/jsr/detail/118.jsp

MeT-PTD MeT. MeT PTD Definition – Personal Trusted Device Definition,
Version 1.0, February 2003. URL: http://www.mobiletransaction.org

3. REFERENCES 9

April 2009 Copyright © 2009 RSA Security Inc.

PCMCIA Personal Computer Memory Card International Association. PC Card
Standard, Release 2.1,. July 1993.

PKCS #1 RSA Laboratories. RSA Cryptography Standard. v2.1, June 14, 2002.

PKCS #3 RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4,
November 1993.

PKCS #5 RSA Laboratories. Password-Based Encryption Standard. v2.0,
March 25, 1999.

PKCS #7 RSA Laboratories. Cryptographic Message Syntax Standard. v1.5,
November 1993.

PKCS #8 RSA Laboratories. Private-Key Information Syntax Standard. v1.2,
November 1993.

PKCS #11-C RSA Laboratories. PKCS #11: Conformance Profile Specification,
October 2000.

PKCS #11-P RSA Laboratories. PKCS #11 Profiles for mobile devices, June 2003.

PKCS #11-B RSA Laboratories. PKCS #11 Base Functionality, April 2009.

PKCS #12 RSA Laboratories. Personal Information Exchange Syntax Standard.
v1.0, June 1999.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992. URL: http://ietf.org/rfc/rfc1319.txt

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992. URL: http://ietf.org/rfc/rfc1321.txt

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993. URL:
http://ietf.org/rfc/rfc1421.txt

RFC 2045 Freed, N., and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies.
November 1996. URL: http://ietf.org/rfc/rfc2045.txt

RFC 2246 T. Dierks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999. URL: http://ietf.org/rfc/rfc2246.txt

RFC 2279 F. Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646
Alis Technologies, January 1998. URL: http://ietf.org/rfc/rfc2279.txt

RFC 2534 Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media
Features for Display, Print, and Fax. March 1999. URL:
http://ietf.org/rfc/rfc2534.txt

RFC 2630 R. Housley. RFC 2630: Cryptographic Message Syntax. June 1999.
URL: http://ietf.org/rfc/rfc2630.txt

10 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

RFC 2743 J. Linn. RFC 2743: Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000.
URL: http://ietf.org/rfc/rfc2743.txt

RFC 2744 J. Wray. RFC 2744: Generic Security Services API Version 2: C-
bindings. Iris Associates, January 2000. URL:
http://ietf.org/rfc/rfc2744.txt

SEC 1 Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography.
Version 1.0, September 20, 2000.

SEC 2 Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 2: Recommended Elliptic Curve
Domain Parameters. Version 1.0, September 20, 2000.

TLS IETF. RFC 2246: The TLS Protocol Version 1.0 . January 1999. URL:
http://ietf.org/rfc/rfc2246.txt

WIM WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July
2001. URL: http://www.wapforum.org/

WPKI WAP. Wireless PKI. — WAP-217-WPKI-20010424-a. April 2001.
URL: http://www.wapforum.org/

WTLS WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-
20010406-a. April 2001. URL: http://www.wapforum.org/.

X.500 ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Overview of Concepts, Models and Services. February
2001.
Identical to ISO/IEC 9594-1

X.509 ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Public-key and Attribute Certificate Frameworks.
March 2000.
Identical to ISO/IEC 9594-8

X.680 ITU-T. Information Technology — Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

X.690 ITU-T. Information Technology — ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER), and Distinguished Encoding Rules (DER). July 2002.
Identical to ISO/IEC 8825-1

4 Definitions

For the purposes of this standard, the following definitions apply:

 BATON MISSI’s BATON block cipher.

4. DEFINITIONS 11

April 2009 Copyright © 2009 RSA Security Inc.

 CAST Entrust Technologies’ proprietary symmetric block
cipher.

 CAST3 Entrust Technologies’ proprietary symmetric block
cipher.

 CAST5 Another name for Entrust Technologies’ symmetric
block cipher CAST128. CAST128 is the preferred
name.

 CAST128 Entrust Technologies’ symmetric block cipher.

 CDMF Commercial Data Masking Facility, a block
encipherment method specified by International
Business Machines Corporation and based on DES.

 CMS Cryptographic Message Syntax (see RFC 2630)

 DES Data Encryption Standard, as defined in FIPS PUB 46-
3.

 ECB Electronic Codebook mode, as defined in FIPS PUB
81.

 FASTHASH MISSI’s FASTHASH message-digesting algorithm.

 IDEA Ascom Systec’s symmetric block cipher.

 IV Initialization Vector.

 JUNIPER MISSI’s JUNIPER block cipher.

 KEA MISSI’s Key Exchange Algorithm.

 LYNKS A smart card manufactured by SPYRUS.

 MAC Message Authentication Code.

 MD2 RSA Security's MD2 message-digest algorithm, as
defined in RFC 1319.

 MD5 RSA Security's MD5 message-digest algorithm, as
defined in RFC 1321.

 PRF Pseudo random function.

 RSA The RSA public-key cryptosystem.

 RC2 RSA Security’s RC2 symmetric block cipher.

 RC4 RSA Security’s proprietary RC4 symmetric stream
cipher.

 RC5 RSA Security’s RC5 symmetric block cipher.

 SET The Secure Electronic Transaction protocol.

 SHA-1 The (revised) Secure Hash Algorithm with a 160-bit
message digest, as defined in FIPS PUB 180-2.

12 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

 SKIPJACK MISSI’s SKIPJACK block cipher.

 UTF-8 Universal Character Set (UCS) transformation format
(UTF) that represents ISO 10646 and UNICODE
strings with a variable number of octets.

5 General overview

5.1 Introduction

Refer to PKCS#11 Base Functionality for basic pkcs#11 API functions and behaviour.

6 Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be performed.

The following table shows which Cryptoki mechanisms are supported by different
cryptographic operations. For any particular token, of course, a particular operation may
well support only a subset of the mechanisms listed. There is also no guarantee that a
token which supports one mechanism for some operation supports any other mechanism
for any other operation (or even supports that same mechanism for any other operation).
For example, even if a token is able to create RSA digital signatures with the
CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can
also perform RSA encryption with CKM_RSA_PKCS.

Table 1, Mechanisms vs. Functions
 Functions

Mechanism

Encrypt
&

Decrypt

Sign
&

Verify

SR
&

VR1

Digest

Gen.
 Key/
Key
Pair

Wrap
&

Unwrap

Derive

CKM_FORTEZZA_TIMESTAMP 2
CKM_KEA_KEY_PAIR_GEN
CKM_KEA_KEY_DERIVE
CKM_RC2_KEY_GEN
CKM_RC2_ECB
CKM_RC2_CBC
CKM_RC2_CBC_PAD
CKM_RC2_MAC_GENERAL
CKM_RC2_MAC
CKM_RC4_KEY_GEN
CKM_RC4
CKM_RC5_KEY_GEN
CKM_RC5_ECB
CKM_RC5_CBC
CKM_RC5_CBC_PAD
CKM_RC5_MAC_GENERAL

6. MECHANISMS 13

April 2009 Copyright © 2009 RSA Security Inc.

 Functions

Mechanism

Encrypt
&

Decrypt

Sign
&

Verify

SR
&

VR1

Digest

Gen.
 Key/
Key
Pair

Wrap
&

Unwrap

Derive

CKM_RC5_MAC
CKM_DES_KEY_GEN
CKM_DES_ECB
CKM_DES_CBC
CKM_DES_CBC_PAD
CKM_DES_MAC_GENERAL
CKM_DES_MAC
CKM_CAST_KEY_GEN
CKM_CAST_ECB
CKM_CAST_CBC
CKM_CAST_CBC_PAD
CKM_CAST_MAC_GENERAL
CKM_CAST_MAC
CKM_CAST3_KEY_GEN
CKM_CAST3_ECB
CKM_CAST3_CBC
CKM_CAST3_CBC_PAD
CKM_CAST3_MAC_GENERAL
CKM_CAST3_MAC
CKM_CAST128_KEY_GEN
(CKM_CAST5_KEY_GEN)

CKM_CAST128_ECB (CKM_CAST5_ECB)
CKM_CAST128_CBC (CKM_CAST5_CBC)
CKM_CAST128_CBC_PAD
(CKM_CAST5_CBC_PAD)

CKM_CAST128_MAC_GENERAL
(CKM_CAST5_MAC_GENERAL)

CKM_CAST128_MAC (CKM_CAST5_MAC)
CKM_IDEA_KEY_GEN
CKM_IDEA_ECB
CKM_IDEA_CBC
CKM_IDEA_CBC_PAD
CKM_IDEA_MAC_GENERAL
CKM_IDEA_MAC
CKM_CDMF_KEY_GEN
CKM_CDMF_ECB
CKM_CDMF_CBC
CKM_CDMF_CBC_PAD
CKM_CDMF_MAC_GENERAL
CKM_CDMF_MAC
CKM_SKIPJACK_KEY_GEN
CKM_SKIPJACK_ECB64
CKM_SKIPJACK_CBC64
CKM_SKIPJACK_OFB64
CKM_SKIPJACK_CFB64
CKM_SKIPJACK_CFB32
CKM_SKIPJACK_CFB16
CKM_SKIPJACK_CFB8

14 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

 Functions

Mechanism

Encrypt
&

Decrypt

Sign
&

Verify

SR
&

VR1

Digest

Gen.
 Key/
Key
Pair

Wrap
&

Unwrap

Derive

CKM_SKIPJACK_WRAP
CKM_SKIPJACK_PRIVATE_WRAP
CKM_SKIPJACK_RELAYX 3
CKM_BATON_KEY_GEN
CKM_BATON_ECB128
CKM_BATON_ECB96
CKM_BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_WRAP
CKM_JUNIPER_KEY_GEN
CKM_JUNIPER_ECB128
CKM_JUNIPER_CBC128
CKM_JUNIPER_COUNTER
CKM_JUNIPER_SHUFFLE
CKM_JUNIPER_WRAP
CKM_MD2
CKM_MD2_HMAC_GENERAL
CKM_MD2_HMAC
CKM_MD2_KEY_DERIVATION
CKM_MD5
CKM_MD5_HMAC_GENERAL
CKM_MD5_HMAC
CKM_MD5_KEY_DERIVATION
CKM_RIPEMD128
CKM_RIPEMD128_HMAC_GENERAL
CKM_RIPEMD128_HMAC
CKM_RIPEMD160
CKM_RIPEMD160_HMAC_GENERAL
CKM_RIPEMD160_HMAC
CKM_FASTHASH
CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST128_CBC
(CKM_PBE_MD5_CAST5_CBC)

CKM_PBE_SHA1_CAST128_CBC
(CKM_PBE_SHA1_CAST5_CBC)

CKM_PBE_SHA1_RC4_128
CKM_PBE_SHA1_RC4_40
CKM_PBE_SHA1_RC2_128_CBC
CKM_PBE_SHA1_RC2_40_CBC
CKM_PBA_SHA1_WITH_SHA1_HMAC
CKM_PKCS5_PBKD2
CKM_KEY_WRAP_SET_OAEP
CKM_KEY_WRAP_LYNKS

1 SR = SignRecover, VR = VerifyRecover.

6. MECHANISMS 15

April 2009 Copyright © 2009 RSA Security Inc.

2 Single-part operations only.
3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of this section will present in detail the mechanisms supported by
Cryptoki and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen
fields of the CK_MECHANISM_INFO structure, then those fields have no meaning for
that particular mechanism.

6.1.1 FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP,
is a mechanism for single-part signatures and verification. The signatures it produces and
verifies are DSA digital signatures over the provided hash value and the current time.

It has no parameters.

Constraints on key types and the length of data are summarized in the following table.
The input and output data may begin at the same location in memory.

Table 2, FORTEZZA Timestamp: Key And Data Length

Function Key type Input
length

Output
length

C_Sign1 DSA private key 20 40
C_Verify1 DSA public key 20, 402 N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in
bits.

6.2 KEA

6.2.1 Definitions

This section defines the key type “CKK_KEA” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_KEA_KEY_PAIR_GEN
CKM_KEA_KEY_DERIVE

16 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.2.2 KEA mechanism parameters

♦ CK_KEA_DERIVE_PARAMS; CK_KEA_DERIVE_PARAMS_PTR

CK_KEA_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_KEA_DERIVE mechanism. It is defined as follows:

typedef struct CK_KEA_DERIVE_PARAMS {
 CK_BBOOL isSender;
 CK_ULONG ulRandomLen;
 CK_BYTE_PTR pRandomA;
 CK_BYTE_PTR pRandomB;
 CK_ULONG ulPublicDataLen;
 CK_BYTE_PTR pPublicData;
} CK_KEA_DERIVE_PARAMS;

The fields of the structure have the following meanings:

 isSender Option for generating the key (called a TEK). The
value is CK_TRUE if the sender (originator) generates
the TEK, CK_FALSE if the recipient is regenerating
the TEK.

 ulRandomLen size of random Ra and Rb, in bytes

 pRandomA pointer to Ra data

 pRandomB pointer to Rb data

 ulPublicDataLen other party’s KEA public key size

 pPublicData pointer to other party’s KEA public key value

CK_KEA_DERIVE_PARAMS_PTR is a pointer to a
CK_KEA_DERIVE_PARAMS.

6.2.3 KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold
KEA public keys. The following table defines the KEA public key object attributes, in
addition to the common attributes defined for this object class:

6. MECHANISMS 17

April 2009 Copyright © 2009 RSA Security Inc.

Table 3, KEA Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,3 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME1,3 Big integer Subprime q (160 bits)
CKA_BASE1,3 Big integer Base g (512 to 1024 bits, in steps of 64 bits)
CKA_VALUE1,4 Big integer Public value y

- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “KEA domain parameters”.

The following is a sample template for creating a KEA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR label[] = “A KEA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

6.2.4 KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA)
hold KEA private keys. The following table defines the KEA private key object
attributes, in addition to the common attributes defined for this object class:

18 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 4, KEA Private Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,4,6 Big integer Prime p (512 to 1024 bits, in steps of

64 bits)
CKA_SUBPRIME1,4,6 Big integer Subprime q (160 bits)
CKA_BASE1,4,6 Big integer Base g (512 to 1024 bits, in steps of

64 bits)
CKA_VALUE1,4,6,7 Big integer Private value x

- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “KEA domain parameters”.

Note that when generating a KEA private key, the KEA parameters are not specified in
the key’s template. This is because KEA private keys are only generated as part of a
KEA key pair, and the KEA parameters for the pair are specified in the template for the
KEA public key.

The following is a sample template for creating a KEA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR label[] = “A KEA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

6. MECHANISMS 19

April 2009 Copyright © 2009 RSA Security Inc.

6.2.5 KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN,
generates key pairs for the Key Exchange Algorithm, as defined by NIST’s “SKIPJACK
and KEA Algorithm Specification Version 2.0”, 29 May 1998.

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime,
subprime and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and
CKA_BASE attributes of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these KEA domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the KEA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of KEA prime sizes, in
bits.

6.2.6 KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA_DERIVE, is a mechanism
for key derivation based on KEA, the Key Exchange Algorithm, as defined by NIST’s
“SKIPJACK and KEA Algorithm Specification Version 2.0”, 29 May 1998.

It has a parameter, a CK_KEA_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

As defined in the Specification, KEA can be used in two different operational modes: full
mode and e-mail mode. Full mode is a two-phase key derivation sequence that requires
real-time parameter exchange between two parties. E-mail mode is a one-phase key
derivation sequence that does not require real-time parameter exchange. By convention,
e-mail mode is designated by use of a fixed value of one (1) for the KEA parameter Rb
(pRandomB).

20 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

The operation of this mechanism depends on two of the values in the supplied
CK_KEA_DERIVE_PARAMS structure, as detailed in the table below. Note that, in all
cases, the data buffers pointed to by the parameter structure fields pRandomA and
pRandomB must be allocated by the caller prior to invoking C_DeriveKey. Also, the
values pointed to by pRandomA and pRandomB are represented as Cryptoki “Big
integer” data (i.e., a sequence of bytes, most-significant byte first).

Table 5, KEA Parameter Values and Operations

Value of
boolean
isSender

Value of
big integer
pRandomB

Token Action

(after checking parameter and template values)
CK_TRUE 0 Compute KEA Ra value, store it in pRandomA, return

CKR_OK. No derived key object is created.
CK_TRUE 1 Compute KEA Ra value, store it in pRandomA, derive

key value using e-mail mode, create key object,
return CKR_OK.

CK_TRUE >1 Compute KEA Ra value, store it in pRandomA, derive
key value using full mode, create key object, return
CKR_OK.

CK_FALSE 0 Compute KEA Rb value, store it in pRandomB, return
CKR_OK. No derived key object is created.

CK_FALSE 1 Derive key value using e-mail mode, create key
object, return CKR_OK.

CK_FALSE >1 Derive key value using full mode, create key object,
return CKR_OK.

Note that the parameter value pRandomB == 0 is a flag that the KEA mechanism is being
invoked to compute the party’s public random value (Ra or Rb, for sender or recipient,
respectively), not to derive a key. In these cases, any object template supplied as the
C_DeriveKey pTemplate argument should be ignored.

This mechanism has the following rules about key sensitivity and extractability†:

• The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

_

† Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE,
CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in
version 2.11 to match the policy used by other key derivation mechanisms such as
CKM_SSL3_MASTER_KEY_DERIVE.

6. MECHANISMS 21

April 2009 Copyright © 2009 RSA Security Inc.

• If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well. If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

• Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of KEA prime sizes, in
bits.

6.3 RC2

RC2 is a block cipher which is trademarked by RSA Security. It has a variable keysize
and an additional parameter, the “effective number of bits in the RC2 search space”,
which can take on values in the range 1-1024, inclusive. The effective number of bits in
the RC2 search space is sometimes specified by an RC2 “version number”; this “version
number” is not the same thing as the “effective number of bits”, however. There is a
canonical way to convert from one to the other.

6.3.1 Definitions

This section defines the key type “CKK_RC2” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_RC2_KEY_GEN
CKM_RC2_ECB
CKM_RC2_CBC
CKM_RC2_MAC
CKM_RC2_MAC_GENERAL
CKM_RC2_CBC_PAD

6.3.2 RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold
RC2 keys. The following table defines the RC2 secret key object attributes, in addition
to the common attributes defined for this object class:

22 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 6, RC2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 128

bytes)
CKA_VALUE_LEN2,3 CK_ULONG Length in bytes of key

value
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
CK_UTF8CHAR label[] = “An RC2 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.3.3 RC2 mechanism parameters

♦ CK_RC2_PARAMS; CK_RC2_PARAMS_PTR

CK_RC2_PARAMS provides the parameters to the CKM_RC2_ECB and
CKM_RC2_MAC mechanisms. It holds the effective number of bits in the RC2 search
space. It is defined as follows:

typedef CK_ULONG CK_RC2_PARAMS;

CK_RC2_PARAMS_PTR is a pointer to a CK_RC2_PARAMS.

♦ CK_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS_PTR

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the
CKM_RC2_CBC and CKM_RC2_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK_RC2_CBC_PARAMS {
 CK_ULONG ulEffectiveBits;
 CK_BYTE iv[8];
} CK_RC2_CBC_PARAMS;

6. MECHANISMS 23

April 2009 Copyright © 2009 RSA Security Inc.

The fields of the structure have the following meanings:

 ulEffectiveBits the effective number of bits in the RC2 search space

 iv the initialization vector (IV) for cipher block chaining
mode

CK_RC2_CBC_PARAMS_PTR is a pointer to a CK_RC2_CBC_PARAMS.

♦ CK_RC2_MAC_GENERAL_PARAMS;
CK_RC2_MAC_GENERAL_PARAMS_PTR

CK_RC2_MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC2_MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK_RC2_MAC_GENERAL_PARAMS {
 CK_ULONG ulEffectiveBits;
 CK_ULONG ulMacLength;
} CK_RC2_MAC_GENERAL_PARAMS;

The fields of the structure have the following meanings:

 ulEffectiveBits the effective number of bits in the RC2 search space

 ulMacLength length of the MAC produced, in bytes

CK_RC2_MAC_GENERAL_PARAMS_PTR is a pointer to a
CK_RC2_MAC_GENERAL_PARAMS.

6.3.4 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key
generation mechanism for RSA Security’s block cipher RC2.

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC2 key type (specifically,
the flags indicating which functions the key supports) may be specified in the template
for the key, or else are assigned default initial values.

24 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 key sizes, in
bits.

6.3.5 RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RC2 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of bits
in the RC2 search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 7, RC2-ECB: Key And Data Length

Function Key
type

Input length Output length Comments

C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to

multiple of 8

C_UnwrapKey RC2 multiple of 8 determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

6. MECHANISMS 25

April 2009 Copyright © 2009 RSA Security Inc.

6.3.6 RC2-CBC

RC2-CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector for cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 8, RC2-CBC: Key And Data Length

Function Key
type

Input length Output length Comments

C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up

to multiple of 8

C_UnwrapKey RC2 multiple of 8 determined by type of
key being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

26 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.3.7 RC2-CBC with PKCS padding

RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on RSA Security’s block cipher RC2; cipher-block chaining mode as defined in
FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section Error! Reference source not found. for details). The
entries in the table below for data length constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 9, RC2-CBC with PKCS Padding: Key And Data Length

Function Key
type

Input length Output length

C_Encrypt RC2 any input length rounded up to
multiple of 8

C_Decrypt RC2 multiple of 8 between 1 and 8 bytes
shorter than input length

C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey RC2 multiple of 8 between 1 and 8 bytes
shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

6.3.8 General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2_MAC_GENERAL, is a mechanism for
single- and multiple-part signatures and verification, based on RSA Security’s block
cipher RC2 and data authentication as defined in FIPS PUB 113.

6. MECHANISMS 27

April 2009 Copyright © 2009 RSA Security Inc.

It has a parameter, a CK_RC2_MAC_GENERAL_PARAMS structure, which specifies
the effective number of bits in the RC2 search space and the output length desired from
the mechanism.

The output bytes from this mechanism are taken from the start of the final RC2 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 10, General-length RC2-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign RC2 any 0-8, as specified in parameters
C_Verify RC2 any 0-8, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

6.3.9 RC2-MAC

RC2-MAC, denoted by CKM_RC2_MAC, is a special case of the general-length RC2-
MAC mechanism (see Section 6.3.8). Instead of taking a
CK_RC2_MAC_GENERAL_PARAMS parameter, it takes a CK_RC2_PARAMS
parameter, which only contains the effective number of bits in the RC2 search space.
RC2-MAC always produces and verifies 4-byte MACs.

Constraints on key types and the length of data are summarized in the following table:

Table 11, RC2-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign RC2 any 4
C_Verify RC2 any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

28 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.4 RC4

6.4.1 Definitions

This section defines the key type “CKK_RC4” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_RC4_KEY_GEN
CKM_RC4

6.4.2 RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold
RC4 keys. The following table defines the RC4 secret key object attributes, in addition
to the common attributes defined for this object class:

Table 12, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 256

bytes)
CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key

value
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;
CK_UTF8CHAR label[] = “An RC4 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.4.3 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4_KEY_GEN, is a key
generation mechanism for RSA Security’s proprietary stream cipher RC4.

6. MECHANISMS 29

April 2009 Copyright © 2009 RSA Security Inc.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC4 key type (specifically,
the flags indicating which functions the key supports) may be specified in the template
for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC4 key sizes, in
bits.

6.4.4 RC4 mechanism

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and
decryption based on RSA Security’s proprietary stream cipher RC4.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 13, RC4: Key And Data Length

Function Key type Input length Output length Comments
C_Encrypt RC4 any same as input

length
no final part

C_Decrypt RC4 any same as input
length

no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC4 key sizes, in
bits.

6.5 RC5

RC5 is a parametrizable block cipher patented by RSA Security. It has a variable
wordsize, a variable keysize, and a variable number of rounds. The blocksize of RC5 is
always equal to twice its wordsize.

30 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.5.1 Definitions

This section defines the key type “CKK_RC5” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_RC5_KEY_GEN
CKM_RC5_ECB
CKM_RC5_CBC
CKM_RC5_MAC
CKM_RC5_MAC_GENERAL
CKM_RC5_CBC_PAD

6.5.2 RC5 secret key objects

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold
RC5 keys. The following table defines the RC5 secret key object attributes, in addition
to the common attributes defined for this object class:

Table 14, RC5 Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (0 to 255

bytes)
CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key

value
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The following is a sample template for creating an RC5 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC5;
CK_UTF8CHAR label[] = “An RC5 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6. MECHANISMS 31

April 2009 Copyright © 2009 RSA Security Inc.

6.5.3 RC5 mechanism parameters

♦ CK_RC5_PARAMS; CK_RC5_PARAMS_PTR

CK_RC5_PARAMS provides the parameters to the CKM_RC5_ECB and
CKM_RC5_MAC mechanisms. It is defined as follows:

typedef struct CK_RC5_PARAMS {
 CK_ULONG ulWordsize;
 CK_ULONG ulRounds;
} CK_RC5_PARAMS;

The fields of the structure have the following meanings:

 ulWordsize wordsize of RC5 cipher in bytes

 ulRounds number of rounds of RC5 encipherment

CK_RC5_PARAMS_PTR is a pointer to a CK_RC5_PARAMS.

♦ CK_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS_PTR

CK_RC5_CBC_PARAMS is a structure that provides the parameters to the
CKM_RC5_CBC and CKM_RC5_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK_RC5_CBC_PARAMS {
 CK_ULONG ulWordsize;
 CK_ULONG ulRounds;
 CK_BYTE_PTR pIv;
 CK_ULONG ulIvLen;
} CK_RC5_CBC_PARAMS;

The fields of the structure have the following meanings:

 ulWordsize wordsize of RC5 cipher in bytes

 ulRounds number of rounds of RC5 encipherment

 pIv pointer to initialization vector (IV) for CBC encryption

 ulIvLen length of initialization vector (must be same as
blocksize)

CK_RC5_CBC_PARAMS_PTR is a pointer to a CK_RC5_CBC_PARAMS.

32 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

♦ CK_RC5_MAC_GENERAL_PARAMS;
CK_RC5_MAC_GENERAL_PARAMS_PTR

CK_RC5_MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC5_MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK_RC5_MAC_GENERAL_PARAMS {
 CK_ULONG ulWordsize;
 CK_ULONG ulRounds;
 CK_ULONG ulMacLength;
} CK_RC5_MAC_GENERAL_PARAMS;

The fields of the structure have the following meanings:

 ulWordsize wordsize of RC5 cipher in bytes

 ulRounds number of rounds of RC5 encipherment

 ulMacLength length of the MAC produced, in bytes

CK_RC5_MAC_GENERAL_PARAMS_PTR is a pointer to a
CK_RC5_MAC_GENERAL_PARAMS.

6.5.4 RC5 key generation

The RC5 key generation mechanism, denoted CKM_RC5_KEY_GEN, is a key
generation mechanism for RSA Security’s block cipher RC5.

It does not have a parameter.

The mechanism generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC5 key type (specifically,
the flags indicating which functions the key supports) may be specified in the template
for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

6. MECHANISMS 33

April 2009 Copyright © 2009 RSA Security Inc.

6.5.5 RC5-ECB

RC5-ECB, denoted CKM_RC5_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RC5 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5_PARAMS, which indicates the wordsize and number of
rounds of encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of the
cipher blocksize (twice the wordsize). The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attributes of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 15, RC5-ECB: Key And Data Length

Function Key
type

Input length Output length Comments

C_Encrypt RC5 multiple of
blocksize

same as input length no final part

C_Decrypt RC5 multiple of
blocksize

same as input length no final part

C_WrapKey RC5 any input length rounded up to
multiple of blocksize

C_UnwrapKey RC5 multiple of
blocksize

determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

34 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.5.6 RC5-CBC

RC5-CBC, denoted CKM_RC5_CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RC5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 16, RC5-CBC: Key And Data Length

Function Key
type

Input
length

Output length Comments

C_Encrypt RC5 multiple of
blocksize

same as input length no final part

C_Decrypt RC5 multiple of
blocksize

same as input length no final part

C_WrapKey RC5 any input length rounded up to
multiple of blocksize

C_UnwrapKey RC5 multiple of
blocksize

determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

6. MECHANISMS 35

April 2009 Copyright © 2009 RSA Security Inc.

6.5.7 RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on RSA Security’s block cipher RC5; cipher-block chaining mode as defined in
FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section Error! Reference source not found. for details). The
entries in the table below for data length constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 17, RC5-CBC with PKCS Padding: Key And Data Length

Function Key
type

Input length Output length

C_Encrypt RC5 any input length rounded up to
multiple of blocksize

C_Decrypt RC5 multiple of
blocksize

between 1 and blocksize
bytes shorter than input

length
C_WrapKey RC5 any input length rounded up to

multiple of blocksize
C_UnwrapKey RC5 multiple of

blocksize
between 1 and blocksize
bytes shorter than input

length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

36 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.5.8 General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RC5_MAC_GENERAL, is a mechanism for
single- and multiple-part signatures and verification, based on RSA Security’s block
cipher RC5 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC5_MAC_GENERAL_PARAMS structure, which specifies
the wordsize and number of rounds of encryption to use and the output length desired
from the mechanism.

The output bytes from this mechanism are taken from the start of the final RC5 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 18, General-length RC2-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign RC5 any 0-blocksize, as specified in

parameters
C_Verify RC5 any 0-blocksize, as specified in

parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

6.5.9 RC5-MAC

RC5-MAC, denoted by CKM_RC5_MAC, is a special case of the general-length RC5-
MAC mechanism. Instead of taking a CK_RC5_MAC_GENERAL_PARAMS
parameter, it takes a CK_RC5_PARAMS parameter. RC5-MAC always produces and
verifies MACs half as large as the RC5 blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table 19, RC5-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign RC5 any RC5 wordsize = ⎣blocksize/2⎦
C_Verify RC5 any RC5 wordsize = ⎣blocksize/2⎦

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

6. MECHANISMS 37

April 2009 Copyright © 2009 RSA Security Inc.

6.6 General block cipher

For brevity’s sake, the mechanisms for the DES, CAST, CAST3, CAST128 (CAST5),
IDEA, and CDMF block ciphers will be described together here. Each of these ciphers
has the following mechanisms, which will be described in a templatized form.

6.6.1 Definitions

This section defines the key types “CKK_DES”, “CKK_CAST”, “CKK_CAST3”,
“CKK_CAST5” (deprecated in v2.11), “CKK_CAST128”, “CKK_IDEA” and
“CKK_CDMF” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of
key objects.

Mechanisms:

CKM_DES_KEY_GEN
CKM_DES_ECB
CKM_DES_CBC
CKM_DES_MAC
CKM_DES_MAC_GENERAL
CKM_DES_CBC_PAD
CKM_CDMF_KEY_GEN
CKM_CDMF_ECB
CKM_CDMF_CBC
CKM_CDMF_MAC
CKM_CDMF_MAC_GENERAL
CKM_CDMF_CBC_PAD
CKM_DES_OFB64
CKM_DES_OFB8
CKM_DES_CFB64
CKM_DES_CFB8
CKM_CAST_KEY_GEN
CKM_CAST_ECB
CKM_CAST_CBC
CKM_CAST_MAC
CKM_CAST_MAC_GENERAL
CKM_CAST_CBC_PAD
CKM_CAST3_KEY_GEN
CKM_CAST3_ECB
CKM_CAST3_CBC
CKM_CAST3_MAC
CKM_CAST3_MAC_GENERAL
CKM_CAST3_CBC_PAD
CKM_CAST5_KEY_GEN
CKM_CAST128_KEY_GEN
CKM_CAST5_ECB
CKM_CAST128_ECB
CKM_CAST5_CBC

38 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

CKM_CAST128_CBC
CKM_CAST5_MAC
CKM_CAST128_MAC
CKM_CAST5_MAC_GENERAL
CKM_CAST128_MAC_GENERAL
CKM_CAST5_CBC_PAD
CKM_CAST128_CBC_PAD
CKM_IDEA_KEY_GEN
CKM_IDEA_ECB
CKM_IDEA_CBC
CKM_IDEA_MAC
CKM_IDEA_MAC_GENERAL
CKM_IDEA_CBC_PAD

6.6.2 DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold
single-length DES keys. The following table defines the DES secret key object
attributes, in addition to the common attributes defined for this object class:

Table 20, DES Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 8 bytes

long)
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

DES keys must always have their parity bits properly set as described in FIPS PUB 46-3.
Attempting to create or unwrap a DES key with incorrect parity will return an error.

The following is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_UTF8CHAR label[] = “A DES secret key object”;
CK_BYTE value[8] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6. MECHANISMS 39

April 2009 Copyright © 2009 RSA Security Inc.

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

6.6.3 CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST)
hold CAST keys. The following table defines the CAST secret key object attributes, in
addition to the common attributes defined for this object class:

Table 21, CAST Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 8 bytes)
CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key

value
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The following is a sample template for creating a CAST secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST;
CK_UTF8CHAR label[] = “A CAST secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

40 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.6.4 CAST3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3)
hold CAST3 keys. The following table defines the CAST3 secret key object attributes, in
addition to the common attributes defined for this object class:

Table 22, CAST3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 8 bytes)
CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key

value
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The following is a sample template for creating a CAST3 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST3;
CK_UTF8CHAR label[] = “A CAST3 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.6.5 CAST128 (CAST5) secret key objects

CAST128 (also known as CAST5) secret key objects (object class
CKO_SECRET_KEY, key type CKK_CAST128 or CKK_CAST5) hold CAST128
keys. The following table defines the CAST128 secret key object attributes, in addition
to the common attributes defined for this object class:

Table 23, CAST128 (CAST5) Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 16

bytes)
CKA_VALUE_LEN2,3,6 CK_ULONG Length in bytes of key

value
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The following is a sample template for creating a CAST128 (CAST5) secret key object:

6. MECHANISMS 41

April 2009 Copyright © 2009 RSA Security Inc.

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST128;
CK_UTF8CHAR label[] = “A CAST128 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.6.6 IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA)
hold IDEA keys. The following table defines the IDEA secret key object attributes, in
addition to the common attributes defined for this object class:

Table 24, IDEA Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 16 bytes

long)
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

The following is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_IDEA;
CK_UTF8CHAR label[] = “An IDEA secret key object”;
CK_BYTE value[16] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.6.7 CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF)
hold single-length CDMF keys. The following table defines the CDMF secret key object
attributes, in addition to the common attributes defined for this object class:

42 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 25, CDMF Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 8 bytes

long)
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

CDMF keys must always have their parity bits properly set in exactly the same fashion
described for DES keys in FIPS PUB 46-3. Attempting to create or unwrap a CDMF key
with incorrect parity will return an error.

The following is a sample template for creating a CDMF secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDMF;
CK_UTF8CHAR label[] = “A CDMF secret key object”;
CK_BYTE value[8] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.6.8 General block cipher mechanism parameters

♦ CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length
MACing mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST128
(CAST5), IDEA, CDMF and AES ciphers. It also provides the parameters to the general-
length HMACing mechanisms (i.e. MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512,
RIPEMD-128 and RIPEMD-160) and the two SSL 3.0 MACing mechanisms (i.e. MD5
and SHA-1). It holds the length of the MAC that these mechanisms will produce. It is
defined as follows:

typedef CK_ULONG CK_MAC_GENERAL_PARAMS;

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a
CK_MAC_GENERAL_PARAMS.

6. MECHANISMS 43

April 2009 Copyright © 2009 RSA Security Inc.

6.6.9 General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME>_KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

When DES keys or CDMF keys are generated, their parity bits are set properly, as
specified in FIPS PUB 46-3. Similarly, when a triple-DES key is generated, each of the
DES keys comprising it has its parity bits set properly.

When DES or CDMF keys are generated, it is token-dependent whether or not it is
possible for “weak” or “semi-weak” keys to be generated. Similarly, when triple-DES
keys are generated, it is token dependent whether or not it is possible for any of the
component DES keys to be “weak” or “semi-weak” keys.

When CAST, CAST3, or CAST128 (CAST5) keys are generated, the template for the
secret key must specify a CKA_VALUE_LEN attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for the key generation
mechanisms for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes.
For the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

6.6.10 General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME>_ECB. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of
<NAME>’s blocksize. The output data is the same length as the padded input data. It
does not wrap the key type, key length or any other information about the key; the
application must convey these separately.

44 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 26, General Block Cipher ECB: Key And Data Length

Function Key type Input
length

Output length Comments

C_Encrypt <NAME> multiple of
blocksize

same as input length no final
part

C_Decrypt <NAME> multiple of
blocksize

same as input length no final
part

C_WrapKey <NAME> any input length rounded up to
multiple of blocksize

C_UnwrapKey <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

6.6.11 General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted
CKM_<NAME>_CBC. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

Constraints on key types and the length of data are summarized in the following table:

6. MECHANISMS 45

April 2009 Copyright © 2009 RSA Security Inc.

Table 27, General Block Cipher CBC: Key And Data Length

Function Key type Input
length

Output length Comments

C_Encrypt <NAME> multiple of
blocksize

same as input length no final
part

C_Decrypt <NAME> multiple of
blocksize

same as input length no final
part

C_WrapKey <NAME> any input length rounded up to
multiple of blocksize

C_UnwrapKey <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

6.6.12 General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-
CBC with PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechanism
for single- and multiple-part encryption and decryption; key wrapping; and key
unwrapping with <NAME>. All ciphertext is padded with PKCS padding.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section Error! Reference source not found. for details). The
entries in the table below for data length constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

46 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 28, General Block Cipher CBC with PKCS Padding: Key And Data Length

Function Key type Input
length

Output length

C_Encrypt <NAME> any input length rounded up to
multiple of blocksize

C_Decrypt <NAME> multiple of
blocksize

between 1 and blocksize
bytes shorter than input

length
C_WrapKey <NAME> any input length rounded up to

multiple of blocksize
C_UnwrapKey <NAME> multiple of

blocksize
between 1 and blocksize
bytes shorter than input

length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

6.6.13 General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-
MAC”, denoted CKM_<NAME>_MAC_GENERAL. It is a mechanism for single- and
multiple-part signatures and verification, based on the <NAME> encryption algorithm
and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the size of the
output.

The output bytes from this mechanism are taken from the start of the final cipher block
produced in the MACing process.

Constraints on key types and the length of input and output data are summarized in the
following table:

6. MECHANISMS 47

April 2009 Copyright © 2009 RSA Security Inc.

Table 29, General-length General Block Cipher MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign <NAME> any 0-blocksize, depending on

parameters
C_Verify <NAME> any 0-blocksize, depending on

parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

6.6.14 General block cipher MAC

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC”, denoted
CKM_<NAME>_MAC. This mechanism is a special case of the
CKM_<NAME>_MAC_GENERAL mechanism described above. It always produces
an output of size half as large as <NAME>’s blocksize.

This mechanism has no parameters.

Constraints on key types and the length of data are summarized in the following table:

Table 30, General Block Cipher MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign <NAME> any ⎣blocksize/2⎦
C_Verify <NAME> any ⎣blocksize/2⎦

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

48 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.7 SKIPJACK

6.7.1 Definitions

This section defines the key type “CKK_SKIPJACK” for type CK_KEY_TYPE as used
in the CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_SKIPJACK_KEY_GEN
CKM_SKIPJACK_ECB64
CKM_SKIPJACK_CBC64
CKM_SKIPJACK_OFB64
CKM_SKIPJACK_CFB64
CKM_SKIPJACK_CFB32
CKM_SKIPJACK_CFB16
CKM_SKIPJACK_CFB8
CKM_SKIPJACK_WRAP
CKM_SKIPJACK_PRIVATE_WRAP
CKM_SKIPJACK_RELAYX

6.7.2 SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type
CKK_SKIPJACK) holds a single-length MEK or a TEK. The following table defines
the SKIPJACK secret key object attributes, in addition to the common attributes defined
for this object class:

Table 31, SKIPJACK Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 12 bytes

long)
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

SKIPJACK keys have 16 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a SKIPJACK key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a SKIPJACK key with a specified value. Nonetheless, we provide templates for
doing so.

The following is a sample template for creating a SKIPJACK MEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKIPJACK;
CK_UTF8CHAR label[] = “A SKIPJACK MEK secret key object”;

6. MECHANISMS 49

April 2009 Copyright © 2009 RSA Security Inc.

CK_BYTE value[12] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a SKIPJACK TEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKIPJACK;
CK_UTF8CHAR label[] = “A SKIPJACK TEK secret key object”;
CK_BYTE value[12] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

50 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.7.3 SKIPJACK Mechanism parameters

♦ CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a structure that provides the
parameters to the CKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined as
follows:

typedef struct CK_SKIPJACK_PRIVATE_WRAP_PARAMS {
 CK_ULONG ulPasswordLen;
 CK_BYTE_PTR pPassword;
 CK_ULONG ulPublicDataLen;
 CK_BYTE_PTR pPublicData;
 CK_ULONG ulPandGLen;
 CK_ULONG ulQLen;
 CK_ULONG ulRandomLen;
 CK_BYTE_PTR pRandomA;
 CK_BYTE_PTR pPrimeP;
 CK_BYTE_PTR pBaseG;
 CK_BYTE_PTR pSubprimeQ;
} CK_SKIPJACK_PRIVATE_WRAP_PARAMS;

The fields of the structure have the following meanings:

 ulPasswordLen length of the password

 pPassword pointer to the buffer which contains the user-supplied
password

 ulPublicDataLen other party’s key exchange public key size

 pPublicData pointer to other party’s key exchange public key value

 ulPandGLen length of prime and base values

 ulQLen length of subprime value

 ulRandomLen size of random Ra, in bytes

 pRandomA pointer to Ra data

 pPrimeP pointer to Prime, p, value

 pBaseG pointer to Base, g, value

 pSubprimeQ pointer to Subprime, q, value

6. MECHANISMS 51

April 2009 Copyright © 2009 RSA Security Inc.

CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR is a pointer to a
CK_PRIVATE_WRAP_PARAMS.

♦ CK_SKIPJACK_RELAYX_PARAMS;
CK_SKIPJACK_RELAYX_PARAMS_PTR

CK_SKIPJACK_RELAYX_PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_RELAYX mechanism. It is defined as follows:

typedef struct CK_SKIPJACK_RELAYX_PARAMS {
 CK_ULONG ulOldWrappedXLen;
 CK_BYTE_PTR pOldWrappedX;
 CK_ULONG ulOldPasswordLen;
 CK_BYTE_PTR pOldPassword;
 CK_ULONG ulOldPublicDataLen;
 CK_BYTE_PTR pOldPublicData;
 CK_ULONG ulOldRandomLen;
 CK_BYTE_PTR pOldRandomA;
 CK_ULONG ulNewPasswordLen;
 CK_BYTE_PTR pNewPassword;
 CK_ULONG ulNewPublicDataLen;
 CK_BYTE_PTR pNewPublicData;
 CK_ULONG ulNewRandomLen;
 CK_BYTE_PTR pNewRandomA;
} CK_SKIPJACK_RELAYX_PARAMS;

The fields of the structure have the following meanings:

 ulOldWrappedXLen length of old wrapped key in bytes

 pOldWrappedX pointer to old wrapper key

 ulOldPasswordLen length of the old password

 pOldPassword pointer to the buffer which contains the old user-
supplied password

 ulOldPublicDataLen old key exchange public key size

 pOldPublicData pointer to old key exchange public key value

 ulOldRandomLen size of old random Ra in bytes

 pOldRandomA pointer to old Ra data

 ulNewPasswordLen length of the new password

52 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

 pNewPassword pointer to the buffer which contains the new user-
supplied password

 ulNewPublicDataLen new key exchange public key size

 pNewPublicData pointer to new key exchange public key value

 ulNewRandomLen size of new random Ra in bytes

 pNewRandomA pointer to new Ra data

CK_SKIPJACK_RELAYX_PARAMS_PTR is a pointer to a
CK_SKIPJACK_RELAYX_PARAMS.

6.7.4 SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is
a key generation mechanism for SKIPJACK. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

6.7.5 SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit electronic
codebook mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

6. MECHANISMS 53

April 2009 Copyright © 2009 RSA Security Inc.

Table 32, SKIPJACK-ECB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 same as input length no final part
C_Decrypt SKIPJACK multiple of 8 same as input length no final part

6.7.6 SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK_CBC64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher-block
chaining mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 33, SKIPJACK-CBC64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 same as input length no final part
C_Decrypt SKIPJACK multiple of 8 same as input length no final part

6.7.7 SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK_OFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

54 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 34, SKIPJACK-OFB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 same as input length no final part
C_Decrypt SKIPJACK multiple of 8 same as input length no final part

6.7.8 SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK_CFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 35, SKIPJACK-CFB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 same as input length no final part
C_Decrypt SKIPJACK multiple of 8 same as input length no final part

6.7.9 SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 32-bit cipher feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

6. MECHANISMS 55

April 2009 Copyright © 2009 RSA Security Inc.

Table 36, SKIPJACK-CFB32: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 4 same as input length no final part
C_Decrypt SKIPJACK multiple of 4 same as input length no final part

6.7.10 SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK_CFB16, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 16-bit cipher feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 37, SKIPJACK-CFB16: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 4 same as input length no final part
C_Decrypt SKIPJACK multiple of 4 same as input length no final part

6.7.11 SKIPJACK-CFB8

SKIPJACK-CFB8, denoted CKM_SKIPJACK_CFB8, is a mechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 8-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

56 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 38, SKIPJACK-CFB8: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 4 same as input length no final part
C_Decrypt SKIPJACK multiple of 4 same as input length no final part

6.7.12 SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to
wrap and unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and
JUNIPER keys.

It does not have a parameter.

6.7.13 SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted
CKM_SKIPJACK_PRIVATE_WRAP, is used to wrap and unwrap a private key. It
can wrap KEA and DSA private keys.

It has a parameter, a CK_SKIPJACK_PRIVATE_WRAP_PARAMS structure.

6.7.14 SKIPJACK-RELAYX

The SKIPJACK-RELAYX mechanism, denoted CKM_SKIPJACK_RELAYX, is used
with the C_WrapKey function to “change the wrapping” on a private key which was
wrapped with the SKIPJACK-PRIVATE-WRAP mechanism (see Section 6.7.13).

It has a parameter, a CK_SKIPJACK_RELAYX_PARAMS structure.

Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs
from other key-wrapping mechanisms. Other key-wrapping mechanisms take a key
handle as one of the arguments to C_WrapKey; however, for the SKIPJACK_RELAYX
mechanism, the [always invalid] value 0 should be passed as the key handle for
C_WrapKey, and the already-wrapped key should be passed in as part of the
CK_SKIPJACK_RELAYX_PARAMS structure.

6.8 BATON

6.8.1 Definitions

This section defines the key type “CKK_BATON” for type CK_KEY_TYPE as used in
the CKA_KEY_TYPE attribute of key objects.

6. MECHANISMS 57

April 2009 Copyright © 2009 RSA Security Inc.

Mechanisms:

CKM_BATON_KEY_GEN
CKM_BATON_ECB128
CKM_BATON_ECB96
CKM_BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_WRAP

6.8.2 BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type
CKK_BATON) hold single-length BATON keys. The following table defines the
BATON secret key object attributes, in addition to the common attributes defined for this
object class:

Table 39, BATON Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 40 bytes

long)
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a BATON key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a BATON key with a specified value. Nonetheless, we provide templates for
doing so.

The following is a sample template for creating a BATON MEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_UTF8CHAR label[] = “A BATON MEK secret key object”;
CK_BYTE value[40] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a BATON TEK secret key object:

58 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_UTF8CHAR label[] = “A BATON TEK secret key object”;
CK_BYTE value[40] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.8.3 BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key
generation mechanism for BATON. The output of this mechanism is called a Message
Encryption Key (MEK).

It does not have a parameter.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

6.8.4 BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

6. MECHANISMS 59

April 2009 Copyright © 2009 RSA Security Inc.

Table 40, BATON-ECB128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 16 same as input length no final part
C_Decrypt BATON multiple of 16 same as input length no final part

6.8.5 BATON-ECB96

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 96-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 41, BATON-ECB96: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 12 same as input length no final part
C_Decrypt BATON multiple of 12 same as input length no final part

6.8.6 BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

60 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 42, BATON-CBC128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 16 same as input length no final part
C_Decrypt BATON multiple of 16 same as input length no final part

6.8.7 BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single-
and multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 43, BATON-COUNTER: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 16 same as input length no final part
C_Decrypt BATON multiple of 16 same as input length no final part

6.8.8 BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single-
and multiple-part encryption and decryption with BATON in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

6. MECHANISMS 61

April 2009 Copyright © 2009 RSA Security Inc.

Table 44, BATON-SHUFFLE: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 16 same as input length no final part
C_Decrypt BATON multiple of 16 same as input length no final part

6.8.9 BATON WRAP

The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a
function used to wrap and unwrap a secret key (MEK). It can wrap and unwrap
SKIPJACK, BATON, and JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributes to it.

6.9 JUNIPER

6.9.1 Definitions

This section defines the key type “CKK_JUNIPER” for type CK_KEY_TYPE as used in
the CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_JUNIPER_KEY_GEN
CKM_JUNIPER_ECB128
CKM_JUNIPER_CBC128
CKM_JUNIPER_COUNTER
CKM_JUNIPER_SHUFFLE
CKM_JUNIPER_WRAP

6.9.2 JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type
CKK_JUNIPER) hold single-length JUNIPER keys. The following table defines the
JUNIPER secret key object attributes, in addition to the common attributes defined for
this object class:

Table 45, JUNIPER Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 40 bytes

long)
- Refer to [PKCS #11-B] table Error! Reference source not found. for footnotes

62 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a JUNIPER key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a JUNIPER key with a specified value. Nonetheless, we provide templates for
doing so.

The following is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUNIPER;
CK_UTF8CHAR label[] = “A JUNIPER MEK secret key object”;
CK_BYTE value[40] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a JUNIPER TEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUNIPER;
CK_UTF8CHAR label[] = “A JUNIPER TEK secret key object”;
CK_BYTE value[40] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

6.9.3 JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a
key generation mechanism for JUNIPER. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

6. MECHANISMS 63

April 2009 Copyright © 2009 RSA Security Inc.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

6.9.4 JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 46, JUNIPER-ECB128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multiple of 16 same as input length no final part
C_Decrypt JUNIPER multiple of 16 same as input length no final part

6.9.5 JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

64 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 47, JUNIPER-CBC128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multiple of 16 same as input length no final part
C_Decrypt JUNIPER multiple of 16 same as input length no final part

6.9.6 JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 48, JUNIPER-COUNTER: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multiple of 16 same as input length no final part
C_Decrypt JUNIPER multiple of 16 same as input length no final part

6.9.7 JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 49, JUNIPER-SHUFFLE: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multiple of 16 same as input length no final part
C_Decrypt JUNIPER multiple of 16 same as input length no final part

6. MECHANISMS 65

April 2009 Copyright © 2009 RSA Security Inc.

6.9.8 JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a
function used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON,
and JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributes to it.

6.10 MD2

6.10.1 Definitions

Mechanisms:

CKM_MD2
CKM_MD2_HMAC
CKM_MD2_HMAC_GENERAL
CKM_MD2_KEY_DERIVATION

6.10.2 MD2 digest

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting,
following the MD2 message-digest algorithm defined in RFC 1319.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 50, MD2: Data Length

Function Data length Digest length
C_Digest any 16

6.10.3 General-length MD2-HMAC

The general-length MD2-HMAC mechanism, denoted
CKM_MD2_HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD2 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD2 is

66 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

16 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 16-byte HMAC output.

Table 51, General-length MD2-HMAC: Key And Data Length

Function Key type Data
length

Signature length

C_Sign generic secret any 0-16, depending on parameters
C_Verify generic secret any 0-16, depending on parameters

6.10.4 MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2_HMAC, is a special case of the
general-length MD2-HMAC mechanism in Section 6.10.3.

It has no parameter, and always produces an output of length 16.

6.10.5 MD2 key derivation

MD2 key derivation, denoted CKM_MD2_KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MD2.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

• If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of
MD2).

• If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

• If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

• If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key
will be set properly.

If the requested type of key requires more than 16 bytes, such as DES3, an error is
generated.

6. MECHANISMS 67

April 2009 Copyright © 2009 RSA Security Inc.

This mechanism has the following rules about key sensitivity and extractability:

• The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

• If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well. If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

• Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

6.11 MD5

6.11.1 Definitions

Mechanisms:

CKM_MD5
CKM_MD5_HMAC
CKM_MD5_HMAC_GENERAL
CKM_MD5_KEY_DERIVATION

6.11.2 MD5 digest

The MD5 mechanism, denoted CKM_MD5, is a mechanism for message digesting,
following the MD5 message-digest algorithm defined in RFC 1321.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

68 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 52, MD5: Data Length

Function Data length Digest length
C_Digest any 16

6.11.3 General-length MD5-HMAC

The general-length MD5-HMAC mechanism, denoted
CKM_MD5_HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD5 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD5 is
16 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 16-byte HMAC output.

Table 53, General-length MD5-HMAC: Key And Data Length

Function Key type Data
length

Signature length

C_Sign generic secret any 0-16, depending on parameters
C_Verify generic secret any 0-16, depending on parameters

6.11.4 MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5_HMAC, is a special case of the
general-length MD5-HMAC mechanism in Section 6.11.3.

It has no parameter, and always produces an output of length 16.

6.11.5 MD5 key derivation

MD5 key derivation, denoted CKM_MD5_KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MD5.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

• If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of
MD5).

• If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

6. MECHANISMS 69

April 2009 Copyright © 2009 RSA Security Inc.

• If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

• If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key
will be set properly.

If the requested type of key requires more than 16 bytes, such as DES3, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

• The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

• If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well. If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

• Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

6.12 FASTHASH

6.12.1 Definitions

Mechanisms:

CKM_FASTHASH

6.12.2 FASTHASH digest

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message
digesting, following the U. S. government’s algorithm.

It does not have a parameter.

70 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Constraints on the length of input and output data are summarized in the following table:

Table 54, FASTHASH: Data Length

Function Input length Digest length
C_Digest any 40

6.13 PKCS #5 and PKCS #5-style password-based encryption (PBE)

The mechanisms in this section are for generating keys and IVs for performing password-
based encryption. The method used to generate keys and IVs is specified in PKCS #5.

6.13.1 Definitions

Mechanisms:

CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST5_CBC
CKM_PBE_MD5_CAST128_CBC
CKM_PBE_SHA1_CAST5_CBC
CKM_PBE_SHA1_CAST128_CBC
CKM_PBE_SHA1_RC4_128
CKM_PBE_SHA1_RC4_40
CKM_PBE_SHA1_RC2_128_CBC
CKM_PBE_SHA1_RC2_40_CBC

6.13.2 Password-based encryption/authentication mechanism parameters

♦ CK_PBE_PARAMS; CK_PBE_PARAMS_PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information
required by the CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on
the PBE generation mechanisms) and the CKM_PBA_SHA1_WITH_SHA1_HMAC
mechanism. It is defined as follows:

typedef struct CK_PBE_PARAMS {
 CK_BYTE_PTR pInitVector;
 CK_UTF8CHAR_PTR pPassword;
 CK_ULONG ulPasswordLen;
 CK_BYTE_PTR pSalt;
 CK_ULONG ulSaltLen;
 CK_ULONG ulIteration;
} CK_PBE_PARAMS;

6. MECHANISMS 71

April 2009 Copyright © 2009 RSA Security Inc.

The fields of the structure have the following meanings:

 pInitVector pointer to the location that receives the 8-byte
initialization vector (IV), if an IV is required;

 pPassword points to the password to be used in the PBE key
generation;

 ulPasswordLen length in bytes of the password information;

 pSalt points to the salt to be used in the PBE key generation;

 ulSaltLen length in bytes of the salt information;

 ulIteration number of iterations required for the generation.

CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS.

6.13.3 MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2_DES_CBC, is a mechanism used
for generating a DES secret key and an IV from a password and a salt value by using the
MD2 digest algorithm and an iteration count. This functionality is defined in PKCS#5 as
PBKDF1.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

6.13.4 MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5_DES_CBC, is a mechanism used
for generating a DES secret key and an IV from a password and a salt value by using the
MD5 digest algorithm and an iteration count. This functionality is defined in PKCS#5 as
PBKDF1.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

6.13.5 MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5_CAST_CBC, is a mechanism
used for generating a CAST secret key and an IV from a password and a salt value by

72 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

using the MD5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

6.13.6 MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5_CAST3_CBC, is a mechanism
used for generating a CAST3 secret key and an IV from a password and a salt value by
using the MD5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

6.13.7 MD5-PBE for CAST128-CBC (CAST5-CBC)

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_MD5_CAST128_CBC or CKM_PBE_MD5_CAST5_CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an IV from a
password and a salt value by using the MD5 digest algorithm and an iteration count. This
functionality is analogous to that defined in PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

6.13.8 SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_SHA1_CAST128_CBC or CKM_PBE_SHA1_CAST5_CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an IV from a

6. MECHANISMS 73

April 2009 Copyright © 2009 RSA Security Inc.

password and a salt value by using the SHA-1 digest algorithm and an iteration count.
This functionality is analogous to that defined in PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

6.14 PKCS #12 password-based encryption/authentication mechanisms

The mechanisms in this section are for generating keys and IVs for performing password-
based encryption or authentication. The method used to generate keys and IVs is based
on a method that was specified in PKCS #12.

We specify here a general method for producing various types of pseudo-random bits
from a password, p; a string of salt bits, s; and an iteration count, c. The “type” of
pseudo-random bits to be produced is identified by an identification byte, ID, the
meaning of which will be discussed later.

Let H be a hash function built around a compression function f: Z2
u × Z2

v → Z2
u (that is,

H has a chaining variable and output of length u bits, and the message input to the
compression function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1,
u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the
password and salt strings and the number n of pseudo-random bits required. In addition,
u and v are of course nonzero.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length v⋅⎡s/v⎤ bits (the
final copy of the salt may be truncated to create S). Note that if the salt is the empty
string, then so is S.

3. Concatenate copies of the password together to create a string P of length v⋅⎡p/v⎤ bits
(the final copy of the password may be truncated to create P). Note that if the
password is the empty string, then so is P.

4. Set I=S||P to be the concatenation of S and P.

5. Set j=⎡n/u⎤.

6. For i=1, 2, …, j, do the following:

74 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

a) Set Ai=Hc(D||I), the cth hash of D||I. That is, compute the hash of D||I; compute
the hash of that hash; etc.; continue in this fashion until a total of c hashes have
been computed, each on the result of the previous hash.

b) Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai
may be truncated to create B).

c) Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=⎡s/v⎤+⎡p/v⎤,
modify I by setting Ij=(Ij+B+1) mod 2v for each j. To perform this addition,
treat each v-bit block as a binary number represented most-significant bit first.

7. Concatenate A1, A2, …, Aj together to form a pseudo-random bit string, A.

8. Use the first n bits of A as the output of this entire process.

When the password-based encryption mechanisms presented in this section are used to
generate a key and IV (if needed) from a password, salt, and an iteration count, the above
algorithm is used. To generate a key, the identifier byte ID is set to the value 1; to
generate an IV, the identifier byte ID is set to the value 2.

When the password based authentication mechanism presented in this section is used to
generate a key from a password, salt, and an iteration count, the above algorithm is used.
The identifier byte ID is set to the value 3.

6.14.1 SHA-1-PBE for 128-bit RC4

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1_RC4_128, is a mechanism
used for generating a 128-bit RC4 secret key from a password and a salt value by using
the SHA-1 digest algorithm and an iteration count. The method used to generate the key
is described above .

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an IV; for this mechanism,
the contents of this field are ignored, since RC4 does not require an IV.

The key produced by this mechanism will typically be used for performing password-
based encryption.

6.14.2 SHA-1-PBE for 40-bit RC4

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1_RC4_40, is a mechanism used
for generating a 40-bit RC4 secret key from a password and a salt value by using the

6. MECHANISMS 75

April 2009 Copyright © 2009 RSA Security Inc.

SHA-1 digest algorithm and an iteration count. The method used to generate the key is
described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an IV; for this mechanism,
the contents of this field are ignored, since RC4 does not require an IV.

The key produced by this mechanism will typically be used for performing password-
based encryption.

6.14.3 SHA-1-PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_128_CBC, is a
mechanism used for generating a 128-bit RC2 secret key and IV from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and IV is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 128. This ensures
compatibility with the ASN.1 Object Identifier pbeWithSHA1And128BitRC2-CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

6.14.4 SHA-1-PBE for 40-bit RC2-CBC

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_40_CBC, is a
mechanism used for generating a 40-bit RC2 secret key and IV from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and IV is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 40. This ensures
compatibility with the ASN.1 Object Identifier pbeWithSHA1And40BitRC2-CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

76 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

6.15 RIPE-MD

6.15.1 Definitions

Mechanisms:

CKM_RIPEMD128
CKM_RIPEMD128_HMAC
CKM_RIPEMD128_HMAC_GENERAL
CKM_RIPEMD160
CKM_RIPEMD160_HMAC
CKM_RIPEMD160_HMAC_GENERAL

6.15.2 RIPE-MD 128 digest

The RIPE-MD 128 mechanism, denoted CKM_RIPEMD128, is a mechanism for
message digesting, following the RIPE-MD 128 message-digest algorithm.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 55, RIPE-MD 128: Data Length

Function Data length Digest length
C_Digest any 16

6.15.3 General-length RIPE-MD 128-HMAC

The general-length RIPE-MD 128-HMAC mechanism, denoted
CKM_RIPEMD128_HMAC_GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 128 hash function.
The keys it uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of RIPE-
MD 128 is 16 bytes). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 16-byte HMAC output.

Table 56, General-length RIPE-MD 128-HMAC:

Function Key type Data
length Signature length

C_Sign generic secret any 0-16, depending on
parameters

C_Verify generic secret any 0-16, depending on

6. MECHANISMS 77

April 2009 Copyright © 2009 RSA Security Inc.

parameters

6.15.4 RIPE-MD 128-HMAC

The RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEMD128_HMAC, is a
special case of the general-length RIPE-MD 128-HMAC mechanism in Section 6.15.3.

It has no parameter, and always produces an output of length 16.

6.15.5 RIPE-MD 160

The RIPE-MD 160 mechanism, denoted CKM_RIPEMD160, is a mechanism for
message digesting, following the RIPE-MD 160 message-digest algorithm defined in
ISO-10118.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 57, RIPE-MD 160: Data Length

Function Data length Digest length
C_Digest any 20

6.15.6 General-length RIPE-MD 160-HMAC

The general-length RIPE-MD 160-HMAC mechanism, denoted
CKM_RIPEMD160_HMAC_GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 160 hash function.
The keys it uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of RIPE-
MD 160 is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 20-byte HMAC output.

78 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

Table 58, General-length RIPE-MD 160-HMAC:

Function Key type Data
length Signature length

C_Sign generic secret any 0-20, depending on parameters
C_Verify generic secret any 0-20, depending on parameters

6.15.7 RIPE-MD 160-HMAC

The RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160_HMAC, is a
special case of the general-length RIPE-MD 160-HMAC mechanism in Section 6.15.6.

It has no parameter, and always produces an output of length 20.

6.16 SET

6.16.1 Definitions

Mechanisms:

CKM_KEY_WRAP_SET_OAEP

6.16.2 SET mechanism parameters

♦ CK_KEY_WRAP_SET_OAEP_PARAMS;
CK_KEY_WRAP_SET_OAEP_PARAMS_PTR

CK_KEY_WRAP_SET_OAEP_PARAMS is a structure that provides the parameters
to the CKM_KEY_WRAP_SET_OAEP mechanism. It is defined as follows:

typedef struct CK_KEY_WRAP_SET_OAEP_PARAMS {
 CK_BYTE bBC;
 CK_BYTE_PTR pX;
 CK_ULONG ulXLen;
} CK_KEY_WRAP_SET_OAEP_PARAMS;

The fields of the structure have the following meanings:

 bBC block contents byte

 pX concatenation of hash of plaintext data (if present) and
extra data (if present)

 ulXLen length in bytes of concatenation of hash of plaintext
data (if present) and extra data (if present). 0 if neither
is present

6. MECHANISMS 79

April 2009 Copyright © 2009 RSA Security Inc.

CK_KEY_WRAP_SET_OAEP_PARAMS_PTR is a pointer to a
CK_KEY_WRAP_SET_OAEP_PARAMS.

6.16.3 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted
CKM_KEY_WRAP_SET_OAEP, is a mechanism for wrapping and unwrapping a DES
key with an RSA key. The hash of some plaintext data and/or some extra data may
optionally be wrapped together with the DES key. This mechanism is defined in the SET
protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS structure. This
structure holds the “Block Contents” byte of the data and the concatenation of the hash of
plaintext data (if present) and the extra data to be wrapped (if present). If neither the
hash nor the extra data is present, this is indicated by the ulXLen field having the value 0.

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext
data (if present) and the extra data (if present) is returned following the convention
described in Section Error! Reference source not found. on producing output. Note
that if the inputs to C_UnwrapKey are such that the extra data is not returned (e.g., the
buffer supplied in the CK_KEY_WRAP_SET_OAEP_PARAMS structure is
NULL_PTR), then the unwrapped key object will not be created, either.

Be aware that when this mechanism is used to unwrap a key, the bBC and pX fields of the
parameter supplied to the mechanism may be modified.

If an application uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it may
be preferable for it simply to allocate a 128-byte buffer for the concatenation of the hash
of plaintext data and the extra data (this concatenation is never larger than 128 bytes),
rather than calling C_UnwrapKey twice. Each call of C_UnwrapKey with
CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be
performed, and this computational overhead can be avoided by this means.

6.17 LYNKS

6.17.1 Definitions

Mechanisms:

CKM_KEY_WRAP_LYNKS

6.17.2 LYNKS key wrapping

The LYNKS key wrapping mechanism, denoted CKM_KEY_WRAP_LYNKS, is a
mechanism for wrapping and unwrapping secret keys with DES keys. It can wrap any 8-

80 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

byte secret key, and it produces a 10-byte wrapped key, containing a cryptographic
checksum.

It does not have a parameter.

To wrap a 8-byte secret key K with a DES key W, this mechanism performs the following
steps:

1. Initialize two 16-bit integers, sum1 and sum2, to 0.

2. Loop through the bytes of K from first to last.

3. Set sum1= sum1+the key byte (treat the key byte as a number in the range 0-
255).

4. Set sum2= sum2+ sum1.

5. Encrypt K with W in ECB mode, obtaining an encrypted key, E.

6. Concatenate the last 6 bytes of E with sum2, representing sum2 most-significant bit
first. The result is an 8-byte block, T.

7. Encrypt T with W in ECB mode, obtaining an encrypted checksum, C.

8. Concatenate E with the last 2 bytes of C to obtain the wrapped key.

When unwrapping a key with this mechanism, if the cryptographic checksum does not
check out properly, an error is returned. In addition, if a DES key or CDMF key is
unwrapped with this mechanism, the parity bits on the wrapped key must be set
appropriately. If they are not set properly, an error is returned.

A. MANIFEST CONSTANTS 81

April 2009 Copyright © 2009 RSA Security Inc.

A Manifest constants

The following definitions can be found in the appropriate header file.

Also, refer [PKCS #11-B] for additional definitions.

#define CKK_KEA 0x00000005
#define CKK_RC2 0x00000011
#define CKK_RC4 0x00000012
#define CKK_DES 0x00000013
#define CKK_CAST 0x00000016
#define CKK_CAST3 0x00000017
#define CKK_CAST5 0x00000018
#define CKK_CAST128 0x00000018
#define CKK_RC5 0x00000019
#define CKK_IDEA 0x0000001A
#define CKK_SKIPJACK 0x0000001B
#define CKK_BATON 0x0000001C
#define CKK_JUNIPER 0x0000001D

#define CKM_MD2_RSA_PKCS 0x00000004
#define CKM_MD5_RSA_PKCS 0x00000005
#define CKM_RIPEMD128_RSA_PKCS 0x00000007
#define CKM_RIPEMD160_RSA_PKCS 0x00000008
#define CKM_RC2_KEY_GEN 0x00000100
#define CKM_RC2_ECB 0x00000101
#define CKM_RC2_CBC 0x00000102
#define CKM_RC2_MAC 0x00000103
#define CKM_RC2_MAC_GENERAL 0x00000104
#define CKM_RC2_CBC_PAD 0x00000105
#define CKM_RC4_KEY_GEN 0x00000110
#define CKM_RC4 0x00000111
#define CKM_DES_KEY_GEN 0x00000120
#define CKM_DES_ECB 0x00000121
#define CKM_DES_CBC 0x00000122
#define CKM_DES_MAC 0x00000123
#define CKM_DES_MAC_GENERAL 0x00000124
#define CKM_DES_CBC_PAD 0x00000125
#define CKM_MD2 0x00000200
#define CKM_MD2_HMAC 0x00000201
#define CKM_MD2_HMAC_GENERAL 0x00000202
#define CKM_MD5 0x00000210
#define CKM_MD5_HMAC 0x00000211
#define CKM_MD5_HMAC_GENERAL 0x00000212
#define CKM_RIPEMD128 0x00000230
#define CKM_RIPEMD128_HMAC 0x00000231
#define CKM_RIPEMD128_HMAC_GENERAL 0x00000232
#define CKM_RIPEMD160 0x00000240
#define CKM_RIPEMD160_HMAC 0x00000241
#define CKM_RIPEMD160_HMAC_GENERAL 0x00000242
#define CKM_CAST_KEY_GEN 0x00000300
#define CKM_CAST_ECB 0x00000301
#define CKM_CAST_CBC 0x00000302
#define CKM_CAST_MAC 0x00000303
#define CKM_CAST_MAC_GENERAL 0x00000304
#define CKM_CAST_CBC_PAD 0x00000305
#define CKM_CAST3_KEY_GEN 0x00000310

82 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

#define CKM_CAST3_ECB 0x00000311
#define CKM_CAST3_CBC 0x00000312
#define CKM_CAST3_MAC 0x00000313
#define CKM_CAST3_MAC_GENERAL 0x00000314
#define CKM_CAST3_CBC_PAD 0x00000315
#define CKM_CAST5_KEY_GEN 0x00000320
#define CKM_CAST128_KEY_GEN 0x00000320
#define CKM_CAST5_ECB 0x00000321
#define CKM_CAST128_ECB 0x00000321
#define CKM_CAST5_CBC 0x00000322
#define CKM_CAST128_CBC 0x00000322
#define CKM_CAST5_MAC 0x00000323
#define CKM_CAST128_MAC 0x00000323
#define CKM_CAST5_MAC_GENERAL 0x00000324
#define CKM_CAST128_MAC_GENERAL 0x00000324
#define CKM_CAST5_CBC_PAD 0x00000325
#define CKM_CAST128_CBC_PAD 0x00000325
#define CKM_RC5_KEY_GEN 0x00000330
#define CKM_RC5_ECB 0x00000331
#define CKM_RC5_CBC 0x00000332
#define CKM_RC5_MAC 0x00000333
#define CKM_RC5_MAC_GENERAL 0x00000334
#define CKM_RC5_CBC_PAD 0x00000335
#define CKM_IDEA_KEY_GEN 0x00000340
#define CKM_IDEA_ECB 0x00000341
#define CKM_IDEA_CBC 0x00000342
#define CKM_IDEA_MAC 0x00000343
#define CKM_IDEA_MAC_GENERAL 0x00000344
#define CKM_IDEA_CBC_PAD 0x00000345
#define CKM_MD5_KEY_DERIVATION 0x00000390
#define CKM_MD2_KEY_DERIVATION 0x00000391
#define CKM_PBE_MD2_DES_CBC 0x000003A0
#define CKM_PBE_MD5_DES_CBC 0x000003A1
#define CKM_PBE_MD5_CAST_CBC 0x000003A2
#define CKM_PBE_MD5_CAST3_CBC 0x000003A3
#define CKM_PBE_MD5_CAST5_CBC 0x000003A4
#define CKM_PBE_MD5_CAST128_CBC 0x000003A4
#define CKM_PBE_SHA1_CAST5_CBC 0x000003A5
#define CKM_PBE_SHA1_CAST128_CBC 0x000003A5
#define CKM_PBE_SHA1_RC4_128 0x000003A6
#define CKM_PBE_SHA1_RC4_40 0x000003A7
#define CKM_PBE_SHA1_RC2_128_CBC 0x000003AA
#define CKM_PBE_SHA1_RC2_40_CBC 0x000003AB
#define CKM_KEY_WRAP_LYNKS 0x00000400
#define CKM_KEY_WRAP_SET_OAEP 0x00000401
#define CKM_SKIPJACK_KEY_GEN 0x00001000
#define CKM_SKIPJACK_ECB64 0x00001001
#define CKM_SKIPJACK_CBC64 0x00001002
#define CKM_SKIPJACK_OFB64 0x00001003
#define CKM_SKIPJACK_CFB64 0x00001004
#define CKM_SKIPJACK_CFB32 0x00001005
#define CKM_SKIPJACK_CFB16 0x00001006
#define CKM_SKIPJACK_CFB8 0x00001007
#define CKM_SKIPJACK_WRAP 0x00001008
#define CKM_SKIPJACK_PRIVATE_WRAP 0x00001009
#define CKM_SKIPJACK_RELAYX 0x0000100a
#define CKM_KEA_KEY_PAIR_GEN 0x00001010
#define CKM_KEA_KEY_DERIVE 0x00001011
#define CKM_FORTEZZA_TIMESTAMP 0x00001020
#define CKM_BATON_KEY_GEN 0x00001030

A. MANIFEST CONSTANTS 83

April 2009 Copyright © 2009 RSA Security Inc.

#define CKM_BATON_ECB128 0x00001031
#define CKM_BATON_ECB96 0x00001032
#define CKM_BATON_CBC128 0x00001033
#define CKM_BATON_COUNTER 0x00001034
#define CKM_BATON_SHUFFLE 0x00001035
#define CKM_BATON_WRAP 0x00001036
#define CKM_JUNIPER_KEY_GEN 0x00001060
#define CKM_JUNIPER_ECB128 0x00001061
#define CKM_JUNIPER_CBC128 0x00001062
#define CKM_JUNIPER_COUNTER 0x00001063
#define CKM_JUNIPER_SHUFFLE 0x00001064
#define CKM_JUNIPER_WRAP 0x00001065
#define CKM_FASTHASH 0x00001070

84 PKCS #11 OTHER MECHANISMS V2.30: CRYPTOKI

Copyright © 2009RSA Security Inc. April 2009

B Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired
on September 20, 2000. The RC5 block cipher is protected by U.S. Patents 5,724,428 and
5,835,600. RSA Security Inc. makes no other patent claims on the constructions
described in this document, although specific underlying techniques may be covered.

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5 is a trademark
of RSA Security Inc.

CAST, CAST3, CAST5, and CAST128 are registered trademarks of Entrust
Technologies. OS/2 and CDMF (Commercial Data Masking Facility) are registered
trademarks of International Business Machines Corporation. LYNKS is a registered
trademark of SPYRUS Corporation. IDEA is a registered trademark of Ascom Systec.
Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is a registered trademark of UNIX
System Laboratories. FORTEZZA is a registered trademark of the National Security
Agency.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.

C. REVISION HISTORY 85

April 2009 Copyright © 2009 RSA Security Inc.

C Revision History

This is the initial version of PKCS #11 Other Mechanisms v2.30.

